Floor Mounted Walk-In Hoods for Large Processes
International Scientists gather at 14th IWAM Event
Digital Microscope Simplifies Cell Culture Checks
Low-Flow HPLC Columns for Proteomics
The Francis Crick’s Advanced Sequencing Facility Partners for Genomics A…
Computer-Assisted Structure Identification (CASI) for more Efficient Dat…
Mar 03 2023
AMSBIO recently conducted an interview with Professor Ryuji Morizane, a distinguished expert in renal research at Harvard Medical School. Professor Morizane’s groundbreaking research*, which combines organoid and bioengineering technology, has led to the development of kidney organoids that incorporate a vascular system.
To support this innovative work, Professor Morizane’s research team employs StemFit®, a chemically-defined culture medium without human or animal-derived components, for the embryonic (ES) and induced pluripotent stem cells (iPSC) used in the research. Moreover, StemFit® is a feeder-free medium.
The kidney is an essential organ that constantly purifies the blood and regulates fluid balance in the body. Despite advanced 3D cell models, investigating renal function in vitro is challenging due to the kidney’s intricate structure and vascular networks. The emergence of stem cell-based techniques for generating small cell-culture models of organs, known as “organoids,” has significantly hastened kidney research. However, until recently, most organoids lacked vascularisation, which is crucial for proper renal function.
In discussion about his research – Professor Morizane commented: “There were many challenges we had to overcome to reliably produce vascularised renal organoids. In the past, we used to culture hPSCs with feeder cells, however frequent passaging and the removal process of feeder cells often lead to variations in cell quality. Using StemFit® culture medium, has allowed us to eliminate the use of feeder-culture, meaning we can produce a larger stock of iPSCs. This, combined with frequent checking of progenitor cell differentiation efficacy, has helped our researchers reduce batch-to-batch variation. Switching to StemFit® has also improved cell viability and growth, enabling us to improve gene-editing efficacy, and the production of more cells for experimentation.”
He added: ”Our renal organoid technology shows great promise for use in disease modelling and toxicity testing. In the future, I would like to focus on translational research such as drug screening using kidney organoids – and also consider clinical applications. Here the challenge is to produce high-quality cells used for transplantation. For these new applications it is necessary that we develop cost-efficient culture methods to produce iPSCs and the differentiation protocols of organoids.”
AMSBIO’s StemFit® series of chemically-defined media, which are free of animal-derived components, have been demonstrated to effectively maintain induced pluripotent stem cells (iPSCs) and embryonic stem cells (ESCs) in feeder-free conditions throughout the stem cell culture reprogramming, expansion, and differentiation phases. StemFit® is available in both research and GMP grade formulations, and is the market leader in colony-forming efficiency, with lower media volume consumption compared to leading competitors, resulting in the most cost-effective colony expansion. StemFit® is a component of AMSBIO’s Stem Cell Synergy Solution product line for streamlining and improving ES/iPS Cell Culture efficiency, from basic research to clinical applications.
More information online
*Professor Morizane’s research was selected for the NIH Director’s New Innovator Award in 2019.
UniFlow FM Fume Hoods from Hemco Corporation are specifically designed to cater to processes such as synthesis, distillation, and reactor or rack type operat…
Mar 13 2023
Hauschild SpeedMixer® SMART DAC 1100/1500/2000 LR series Germany's Hauschild Engineering has introduced a new range of laboratory mixers, the Hauschild…
Mar 13 2023
Biopharma Group has taken its extensive experience within the freeze-drying industry to help increase lyophilisation productivity, reduce costs and reduce cy…
Mar 13 2023
The field of genomics has grown exponentially over the last twenty years, largely due to the rapid development of methods like NGS, making DNA sequencing…
Mar 13 2023
March 2023
In This Edition Chromatography Articles – On-Column Sample Focussing: a Personal Perspective Mass Spectrometry & Spectroscopy Articles – Multi-scale, multi-modal and operando imaging wi…
Expomed Eurasia Hybrid +
Mar 16 2023 Istanbul, Turkey & online
Laborama 2023
Mar 16 2023 Brussels, Belgium
PITTCON 2023
Mar 18 2023 Philadelphia, PA, USA
Bio-Europe Spring
Mar 20 2023 Basel, Switzerland & online
ACS National Meeting & Expo, Spring 2023
Mar 26 2023 Indianapolis, IN, USA
International Labmate Limited
Oak Court Business Centre
Sandridge Park, Porters Wood
St Albans
Hertfordshire
AL3 6PH
United Kingdom
T +44 (0)1727 858 840
F +44 (0)1727 840 310
E info@labmate-online.com
Copyright © 2023 Labmate Online. All rights reserved.
